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Coupled Rectimguiar Bars Between Parallel Plates*

WILLIAM J. GETSINGER~, MEMBER, IRE

Summar~—Curves are presented giving the even-mode fringing

capacitance, the odd-mode fringing capacitance, and the difference

between odd- and even-mode fringing capacitances for wide ranges
of thickness and spacing of rectangular bars centered between paral-
lel plates. Simple formulas are given relating these capacitances to
even- and odd-mode characteristic impedances of coupled rectangu-

lar bars. Possible applications to strip-line and other circuits are de-
scribed.

The Appendix gives the derivation of the fringing, capacitances by

conformal mapping techniques. The results are exact for bars extend-
ti,g in width infinitely far from the coupling region, and have only
small error (less than 1.24 per cent) for bars whose width k greater

than about 35 per cent of the difference between plate spacing and

bar thickness.

I. GENER.%L

~ N WORKING with shielded strip-line, it is sorne-

J[
times desirable to couple center conductors having

appreciable thickness. The cross section of a typ-

ical structure of this type is shown in Fig 1. There are

two parallel ground planes spaced a distance b apart,

and two rectangular bars located parallel to, and mid-

way between, the ground planes. It is well knownl ‘z that

TENI propagation along such a structure can be de-

scribed in terms of two orthogonal modes, usually de-

noted as the even mode and the odd mode. In the even

mode, both center conductors are at the same poten-

tial, while in the odd mode, the two center conductors

are at opposite potentials with respect to the ground

planes. These two TEM modes have different charac-

teristic impedances, which are intimately related to the

static capacitances of the bars to ground. These capaci-

tances are designated conventionally as parallel-plate

capacitances between bar and ground planes, and fring-

ing capacitances from ends and corners of the bars, as

indicated schematically y in Fig. 1.
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Fig. l—Coupled rectangular bars centered between parallel plates.
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Cohn3 has previously considered coupled rectangular

bars between parallel plates. He gives rigorous results,

based on a conformal mapping solution, for the zero-

thickness case, and adds correction terms to the zero-

thickness case to obtain approximate results for bars of

finite thickness. In a later paper,4 Cohn provides an inl-

proved approximation for the odd-mode correction

term. Horgan5 has approached the problem by divid-

ing the cross section of the coupled rectangular bar

structure into insulated rectangular boxes, for each of

which potential solutions were available. Horgan then

corrected these approximations by adding new poten-

tial functions such that total potentials were matched

across the insulating bounds, and the resulting capaci-

tance was a maximum. Horgan’s results, like those of

Cohn, were written as exact thin-strip capacitance solu-

tions plus correction terms.

The present paper, however, does not modify a solu-

tion for coupled thin strips, but determines the fring-

ing capacitances for bars extending in width infinitely

far from the coupling region by an exact conformal

mapping method, and presents these fringing capaci-

tances directly on graphs for wide ranges of bar thick-

ness and spacing. The use of accurate graphs, giving the

fringing capacitances directly, allows the total capaci-

tance (and thus characteristic impedance, or alterna-

tively, bar width) of any of a variety of structures to be

determined quite easily by simply summing the ap-

propriate fringing and parallel plate capacitances, as

will be shown subsequently.

II. TECHNICAL DESCRIPTION

The characteristic impedance ZO of a lossless uniform

transmission line operating in the TEM mode is related

to its shunt capacitance by

(1)

where

<~= the relative dielectric constant of the medium

in which the wave travels

q = the impedance of free space= 376,7 ohms per

square

3 S. B. Cohn, “Shielded coupled-strip transmission line, ” IRE
T~ANS. ON MICROWAVE THEORY AND TECHNIQUES, vol. MTr-8,
PP. ,~~–~8 ;c~$ber, 1955.

. . , ~Thickness corrections for capacitive obstacles and
strip conductors, IRE TR4NS. ON MrcRow~viz THEORY AND TECH-
NIQUES, vol. iWTT-8, pp. 638–644; November, 1960.

6 J. D. Horgan, “coupled strip transmission lines with rectangular
inner conductors, ” IRE TRANS. ON MICROTAVE THEORY AND
‘hCHNIQUES, vol. MTT-5, pp. 92–99; April, 1957.
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C/C = the ratio of the static capacitance per unit

length between conductors to the permittivity

(in the same units) of the dielectric medium

(this ratio is independent of the dielectric con-

stant).

The even- and odd-mode impedances of coupled TEM

lines’” can be found by substituting even- and odd-

mode capacitances of the lines in (1).

A generalized schematic diagram of shielded coupled-

strip transmission line is shown in Fig. 2. The circles

represent the coupled conductors. The capacitance to

ground for a single conductor, when both conductors

are at the same potential, is Co., the even-mode capaci-

tance. The capacitance to ground when the two conduc-

tors are oppositely charged with respect to ground is

C~~, the odd-mode capacitance.

+

Fig. 2—Generalized schematic diagram.

The structure of Fig. 1 is composed of parallel-planar

surfaces. This makes it practical to consider the total

capacitance of a given strip to be composed of parallel-

plane capacitances plus appropriate fringing capaci-

tances. (Fringing capacitances take into account the

distortion of the field lines in the vicinity of the edges

of the plane strips. ) Fig. 1 relates the various capaci-

tances to the geometry of the structure under consid-

eration. Thus, it can be seen that the total even-mode

capacitance Co./e from one bar to ground is

COJ, = 2(cp/e + cfe’/e + cf’/4

and the total odd-mode capacitance COO/E from

to ground is

COJ6 = 2(c,/c + Cfo’je + cf’/e) .

(2)

one bar

(3)

In (2) and (3), C, is the parallel-plate capacitance

from the top or bottom side of one bar to the nearest

ground plane; Cf~ is the capacitance to ground from

one corner and half the associated vertical wall in the

coupling region of a bar for even-mode excitation; Cf~

is the capacitance to ground from one corner and half

the associated vertical wall in the coupling region of a

bar for odd-mode excitation; and C; is the capacitance

to ground from one corner and half the associated verti-

cal wall away from the coupling region of a bar for any

Fig. 3—Fringing capacitances for coupled rectangular bars.
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Fig. 4—Odd-mode fringing capacitance for coupled rectangular bars.

excitation. Consideration of Fig. 2 and the definitions

of even- and odd-mode capacitances show that the

capacitance, AC/e, from one bar to the other is given by

AC/e = ~(C../6 – C.e/4 . (4)

Subtraction of (2) from (3) shows that AC/e can be

written entirely in terms of the fringing capacitances as

AC/e = Cfo’/e – Cj,’/~. (5)

Fig. 3 is a plot of both even-mode fringing capaci-

tances, Cf~ /e, and the capacitance, AC/E, between bars

a$, functions of bar thickness and spacing, while Fig. 4

is a similar graph for the odd-mode fringing capaci-

ta rice, Cfo’/e. The derivation of Figs. 3 and 4 is described

in the Appendix. Fig. 5 gives the fringing capacitance

CJ,’/e from the outer edges of the bars as a function

of thickness. The parallel plate capacitance Cp/e is

given by

w/b
cp/e = 2

I–t/b’
(6)

where w and t are the width and thickness of the bar.

Through the use of the above relations and figures, it is

possible to relate physical dimensions of the given con-

fi~guration to even- and odd-mode capacitances or im-

pedances.

.,,
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Fig. 5—Fringing capacitance for an isolated rectangular bar.
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III. USE OF THE GRAPHS

usually, an engineer designing parallel-coupled lines

first determines the values of even- and odd-mode

impedances, Zo, and ZOO, or even- and odd-mode capaci-

tances, C06 and Co., as required by theoretical considera-

tions. He then wishes to determine the corresponding

physical line dimensions. A simple procedure accom-

plishes this. Using (1) in (4) gives

AC/e =
&(&-&)

(7)

Values of b and t are selected and used with the value

of AC/e found from (7) to determine s/b directly from

Fig. 3. Next, CO./c is determined by using ZO. in (1),

and then Cf.’/e and Cft/e are found from t/b and from

the graphs of Figs. 3 and 5. These quantities can be sub-

stituted into the following equation to give w/b

“b ‘+(1-W$cf ’’’-”)’”) “)

Eq. (8) results from substitution of (6) in (2), and re-

arrangement of terms.

Thus, the two unknown dimensions, s/b and q/b,

have been determined.

IV. CONSIDERATIONS OI? ACCURACY

If the bar width w is allowed to become too small,

there is interaction of the fringing fields from the two

edges, and the decomposition of total capacitance into

parallel plane capacitance and fringing capacitances

(which are based on infinite bar widths) is no longer ac-

curate. CohnG shows that for a single bar centered be-

tween parallel planes, the error in total capacitance from

interaction of the fringing fields is about 1.24 per cent

for w/(b –t) = 0.35, where w is the width of the bar, t is

its thickness, and b is again the ground-plane spacing.

If a maximum error in total capacitance of approxi-

mately this magnitude is allowed, then it is necessary

that [(w/b) /(1 –t/b) ] >0.35.

Should this inequality be too restricting, it is possible

to make approximate corrections based on an increase

in the parallel-plate capacitance, to compensate for the

loss of fringing capacitance due to interaction of fring-

ing fields. If an initial value wl/b is found to be less than

0.35 [1 – (t/b)], a new value, wJb can be used, where

zwJb = [0.07[1 – (t/b)] + wl/bj/l.20 (9)

provided that 0.1< (w/b)/ [1– (t/b) ] <0.35. This for-

mula is based on a linear approximation to the exact

fringing capacitance of single thin strip for a (w/b)/

[1 - (t/b)] ratio between 0.1 and 0.35. As the relative

strip width becomes narrower than 0.35, the fringing

8 S. B. Cohn, “Problems in strip transmission lines, ” IRE TRANS.
ON MICROWAVE THEORY AND TECHNIQUES, vol. MTT-3, pp. 119–126;
March, 1955.

capacitance, defined as total capacitance less parallel

plate capacitance, becomes smaller. The total capaci-

tance is given by substituting into (1) the exact thin-

strip formula for Z. given by Cohn. G Eq. (9) adds sufi-

cient parallel-plate capacitance to compensate for the

loss of fringing capacitance. The loss of fringing is as-

sumed to vary linearly below a relative width of 0.35.

Although the formula is analytically only approximate,

it is sufficiently accurate for practical use because it

does no more than give a small correction to a quantity

that is reasonably close to the exact value. It can be

used with both isolated and coupled bars.

The derivations for the fringing capacitances are

exact for bars extending in width infinitely far to the

right and left, away from the coupling region. The orig-

inal computed values were accurate to eight places.

However, in order to give values of fringing capacitance

associated with constant t/b, it was necessary to use

graphical interpolation, as pointed out in the Appendix.

The plotted points were held to an accuracy of three

figures after the decimal point, so that the interpolated

results are slightly less accurate. The curves of Figs. 3

and 4 are accurate to within about one or two per cent.

However, since fringing capacitances are usually not the

predominant part of the total capacitance of a struc-

ture, total capacitance can be specified with somewhat

greater accuracy.

Fig. 5, for the fringing capacitance Cj’/e of a single

bar extending infinitely far in one direction, is based on

an exact solution given by Cohn. G The same data can

be found from Figs. 3 and 4 by reading either Cf.’/e or

Cfo’/e as functions of t/b for large s/b. The accuracy of

Fig. 5 is thus limited by the precision to which the

graph can be read.

V. APPLICATIONS

Figs. 3–5, for fringing capacitances, can be used for a

variety of structures, as shown in Fig. 6, simply by add-

ing the appropriate fringing capacitances with the

parallel plate capacitances to give the even-mode capaci-

tance, the odd-mode capacitance, or the total capaci-

tance. Use of (1) then gives the associated characteristic

impedance. Thus, Fig. 6(a) shows ordinary shielded

strip-line and the capacitances involved when it is open,

closed at one end, or closed at both ends. 7 The struc-

ture closed at one end is sometimes called trough-line,

the structure closed at both ends is sometimes called

rectangular coaxial line. Similarly, the even- and odd-

mode capacitances and impedances can be determined

for the coupled structures shown in Fig. 6(b) for open

or closed ends. This simple technique may also be appli-

cable when the arms of an N-way power divider in

shielded strip-line must run parallel for some distance,

as shown in plan in Fig. 6(c). The even-mode fringing

7 The notation in Fig. 6(a), Cf.’(sJb) and Cj~’(@), does not
indicate multiplication, but merely that Cf.’ is to be evaluated at
s~/b or s6/b, as appropriate for the spacing from the nearby wall.



Fig. 6—Possible applications.

capacitance CJor would then be appropriate for adjacent

eclges of the arms.

Both even- and odd-mode fringing capacitances would

be necessary for multi-element lines, such as are shown

in Fig. 6(d) and (e). The cross section shown in (d) could

be part of a meander or interdigital line, while that in

(e) might be part of a finite or infinite array of elements,

which might be used as an artificial dielectric medium.

The curves given herein can be used in the design of

wide-band, parallel-coupled, strip-transmission-line fil-

ters, such as described by Matthaei. 8 Also, Bolljahn

and Matthaeig have presented design data for slow-wave

structures and filters using parallel-coupled arrays of

line elements. Some realizations of those devices use

relatively wide rectangular bars to form an interdigital

line, comb line, meander line, or similar slow-wave line.

In such cases, the curves given herein greatly facilitate

the process of precision design.

Coupled rectangular bars may also be applied to

strip-line directional couplers, described by Jones and

Bolljahn,z in which the use of rectangular bars allows

closer coupling to be achieved with less critical toler-

a:lces.

APPENDIX

DERIVATION OF FRINGING CAPACITANCES

It is desired to determine the static fringing capaci-

tances shown on the structure of Fig. 1 by means of con-

formal mapping techniques.l”,ll This can be done by

‘ G. L. Matthaei, “Design of wide-band (and narrow-band) band
pass microwave filters on the insertion loss basis, ” IRE TRANS. ON
h’fICROWAVE THEORY AND TECHNIQUES, vol. lMT’1’-8, RD. 580–593;
November, 1960.

. .

g J: ‘r. ~O1ljahn and G. L. Matthaei, “Microwave Filters and
Couphng Structures, ” Stanford Res. Inst., Menlo Park, Calif., Re-
port No. 1, Contract DA 36-039 SC-87398 ~April, 1961.

10 W. R. Smythe, “Static and Dynamic Electricity,” McGraw-
Hill Book Co., Inc., New York, N. Y.; 1939.

11E. Weber, ‘i Electromagnetic fields: theory and applications, ”
in “Mapping of Fields, ” John Wiley and Sons, Inc., hTew York, N. Y.,
-._l ,., ncrl
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subjecting the boundaries of the structure to transfor-

mations under which capacitance is invariant, and that

lead to a new structure for which capacitance is known.

Subtraction of parallel plate capacitances of the original

structure from the total capacitance then leaves the

fringing capacitances. The analysis will be limited to

structures in which the bars are so wide that interaction

between fringing fields of the two edges of a single bar is

negligible. As discussed in Section IV, this requires that

the approximate relation { (zo/b) / [1 – (t/b) ] } >0.35 be

held. Under these conditions it is possible to let the bars

extend in width infinitely far to the left and right, with-

out disturbing the fringing fields appreciably in the

coupling region where the capacitances interact. The

vertical centerline shown on Fig, 1 may be replaced by

an electric wall (conductor) for the odd mode, or by a

magnetic wall for the even mode, in consideration of the

symmetry of the structure. Also, the electric field can

lie parallel to the horizontal centerline where no con-

ductor exists, but cannot cross it because of the sym-

metry. Therefore, a magnetic wall can be placed along

the horizontal centerline. These modifications allow anal-

ysis of only one-quarter of the total symmetrical struc-

ture. The mathematical model is shown on the z-plane

in Fig. 7. Conductors are indicated by solid lines and

magnetic walls by broken lines. The upper-case letters

denote pertinent points of the structure and will serve as

references when transformations to different complex

planes are made.

The analysis essentially consists in transformation of

the contours of the structure on the z-plane into a par-

allel-plate representation on another complex plane,

where capacitance can be computed directly.

The static electric fields of interest lie within the poly-

gon defined by the boundaries of the structure on the

z-plane. The interior of this polygon is to be mapped

onto the first quadrant of the t-plane shown in Fig. 7.

The integral resulting from direct use of the Schwarz-

Christoffel transformation is

s (1 – p)l/2

,9J= dt,
(1 – k’tz)’j’(l – k2t2 sn’ a)

(lo)

where, for the present, l/k and l/(k sn a) are the points

on the real t axis to which the corner F and the point

–j@ map from the z-plane. This integral can be evalu-

ated by further relating the first quadrant of the t-plane

to the interior of the fundamental rectangle of Jacobian

elliptic functions on the u-plane, also shown in Fig. 7,

using the transformation

This substitution gives

f

cnz udu
~=

. l–k2sn2usnza”
(12)

VU1. 1, lY.ru.
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Fig. 7—Mathenlatical models on z-plane, f-plane, and a-plane.

In the above equations, sn u and cn If are Jacobian

elliptic functions having a quarter period K determined

by k, denoted by convention as the modulus. By virtue of

(1 1), a can be considered to be a point on the perimeter

of the fundamental rectangle on the u-plane. It is con-

venient to let

(13)

by definition. Ultimately, k and (3 will be used as inde-

pendent variables.

The mapping of the z-plane onto the t-plane in this

manner has been carried through by Cockroft,12 whose

symbols are retained in Fig. 7 and in the equations

given in this section. The distances on the z-plane are

given by Cockroft as

[

dn a
d=K l–

,42sn a cm a ‘(a) 1
dn a

g= _jL

2 k2snacna

(14)

(15)

dna a
h=jd;’–j~

()
–1. (16)

2 kzsnacna ~

It should be noted that g is a negative quantity and k

an imaginary one. The quantity dn a is also a Jacobian

elliptic function and Z(a) is the Jacobian zeta-function.

The quantity K’ is the same function of the comple-

mentary modulus k’, as A- is of k. The rnoduli are re-

lated by

k’+ k“ = 1. (17)

12J. D. Cockroft, “The effect of curved boundaries on the dis-
tributions of electrical stress round conductors, ” Y. IEE, vol. 66, pp.
385–409; April, 1926.

Comparison of Fig. 1 with Fig. 7 shows that the con-

ventional normalized dimensions s/b and t/b of the rec-

tangular bar structure are related to Cockroft’s dimen-

sions d, g, and k by

–jh
s/b = —

d–g

[/b = —d— .
d–g

(18)

Thus, the ph]-sical dimensions of the structure of Fig. 1

have been related to the parameters of the u-plane by

(14)-(16) and (18).

Now it is necessary to transform the t-plane to a

parallel-plate structure, and determine fringing capaci-

tances as functions of u-plane parameters.

Odd-Mode Capacitance

The two rectangular bars in Fig. 1 are at equal and

opposite voltages when energized in the odd mode, so

that the plane midway between the bars is at zero poten-

tial. Thus, a conductor maybe placed in this plane with-

out disturbing the fields. This is indicated by the solid

line between E and F on the planes of Fig. 7. For this

condition, the t-plane configuration can be transformed

to a parallel-plate structure of unit height by the func-

tion

(19)

which moves the singularity at .4 G to infinity. The in-

teresting region of the w-plane is shown in Fig. 8.

~,Imw

,>; , F G

(

ID c A

0’
>Rew

w - PLANE

Fig. 8—w-plane for odd-mode capacitance.

The fringing capacitance is the difference between the

total capacitance of the structure (total capacitance is

the same on both z- and w-planes) and the parallel-

plane capacitance of the z-plane structure. A reasonable

definition for z-plane parallel-plate capacitance CP. is

parallel-plate capacitance existing between the ground

plane and the full length of the rectangular bar. Mathe-

matically,

c pz

— = lim Im (z/g). (20)
c Z*—Jm

Then the odd-mode fringing capacitance CfO’/e is

Cto’/~ = lim [w(:) – Im (z/g)] (21)
Z+—jw

where w(z) is given by (19) related to the z-plane. In

order to evaluate CIO’/e, it is necessary that both w and

Im (z/g) be expressed as functions of u. The limit must
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also be in terms of u. From Fig. 7 it can be seen that as

z-’-j. along the path from C to A, then L~~K+jK’ –j~

along the path from C to .-1. Thus

cfo’/e = lim
[

Z(2L)
~)(~) — lm — 1 (22)

u-K+JK’ —.IF g“

Substitution of (11) in (19) gives

1

(

l+ksnasnu
zv(z~) = — in

)l–ksnasnu “
(23)

T

Even-Mode Cajacitai~ce

The two rectangular bars in Fig. 1 are at the same

potential when energized in the even mode, so that no

electric field crosses the plane midway between them.

Thus, a magnetic wall may be placed in this plane with-

out disturbing the fields. This is indicated by the broken

line between E and F on the planes of Fig. 7. The upper

half of the f-plane is mapped into a strip of unit height

ou a tl-plane in such a manner that the singularity at

.-f G is removed to infinity by the transformation

The limiting process is simplified by letting
‘l=+lnc:::~:l

(29)

%h=K+jK’-jp-j6 (24)

The tl-plane is shown in Fig. 9. Notice that the upper

where ~-O as LL~K +jK’ —jfl along the path from C half of the t-plane maps into the strip directly below the

to A. Assuming very small ~, and using various elliptic Re tl axis. The positive half of this strip is next mapped

function equivalences, such as may be found in Byrd onto the lower half of a t~-plane, shown in Fig. 9 by the

and Friedman,13 (23) reduces to transformation

1 1

(

cnadna
~,(f~) = — in 2 — — in —j

)

— ~ in 8. (25)
S+o T n- sn a T

Cockroft’s12 (44) gives z(d) as

[

dn a
z(6) = (K+ jK’ – j,8) 1 – k, sn a Cn a Z(a) 1

1 dn a @(jK’ – ja)
.— in

2 kzsnacna @(2K + jK’ – 2j~)
~ (26)

IJsing (26) with (15), and passing to the limit of ~ ap-

proaching zero, gives

[1
z(u)

Im —
[

= (K’ – ,6) ~ – 3 Z(a)]
8-0 g T

K’ 1 2kk’K
— —— . ln—– 1 in cl. (27)

4K 2. . n-

ln (26) and (27) the term @ is Jacobi’s theta function.1~

Now (25) and (27) can be substituted into (22), yielding

[ 1+(K’ –P) +Z(a)–:~

tz=~—l+itfcoshdl, (30)

where

2 cn2 a
Me

1 + cosh ret,(F) = – “
(31)

sn2 a

Finally, the desired parallel-plate configuration is

achieved by mapping the lower half of the tz-plane onto

the positive half of a strip of unit height on the zvl-plane,

using the transformation

1
WI = — arc cosh (—tJ. (32)

T

The zvl-plane is also shown on Fig. 9. Combining (1 1),

(29), (30), (31), and (32) gives WI as a function of u

1

{

cn~ a cn2 a
wI(u) = — arc cosh 1 + —+—

T sns a sn2 a

“[(ksnasnu)’+1 1}(ksnasnu)’-l “
(33)

As with the odd mode, it is convenient to use the vari-

able 6, defined by (24), in passing to the limit. When

(24) is substituted in (33) and appropriate approxima-

tions made for small ti, manipulation yields

— A in @(jK’ – 2jP). (28) 1 1
n-

(

cn a
WI(U) = — in 2 + — in —j

)

— L in 6. (34)
8+0 Ir %’ snadna n’

This is the final form in which odd-mode fringing ca-

pacitance will be presented. Using the definition of z-plane parallel-plate capacitance

given in (20), the even-mode fringing capacitance,

Cfe’/6is
la p. F. Byrd ~~d M. D. Friedman, “Handbook of Elliptic Inte-

grals for Physicists and Engineers, ” Springer-VerIag, Berlin, Ger-
man>-; 1954. Cf;

[

z(u)

1AE. T. Copson, “Theory of Functions of a Complex Variable, ”
_ .—

1
= lim WI(U) – Im -— (35)

O~furd lJniversity Press, London; pp. 405-407; 1960. e s +0 ~
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Fig. 9—t,-plane, t~-pline, and w-plane for even-mode capacitance.

Substitution of (34) and (27) in (35) yields, after simpli-

fication,

[

2jZ(a)
+( K’ –@) —–:

n- g 1
— : in @(jK’ – 2j@). (36)

T

This is the final form in which the even-mode fringing

capacitance will be given.

Difference of Fringing Capacitances

The difference between fringing capacitances, CfO’/e

– Cfe’/e, is a very useful quantity because in most

coupled structures it is also half of the difference be-

tween total odd-mode and even-mode capacitances. This

difference is found by subtracting (36) from (28), yield-

ing

cf. Cf:—. —=
()

‘ln –- .
e e r cnz a

(37)

Evaluation of Fomzulas

‘I’he curves of Cfe’/e and CfO’/e – Cf.’/E as functions of

s/b and t/b were determined in the following manner:

values of 0< k <1 were selected from tables13 ,15 that de-

termined K, K’, and k’; then for each value of k, a range

of values of (3/K’ was selected from tables15 that gave

sn (~, k’), cn (~, k’), and dn ((3, k’). These functions are

related to sn a, cn a, and dn a by

1
sn (a, k) =

dn (~, k’) ‘

sn (& k’)
cn (a, k) = jk’

dn (P, 1’) ‘

, cn (~, k’)
dn (a, k) = k ~n (p, k,, “

The zeta function can be expressed as

(38)

[
Z(a, k) = j Z(~, k’) + ~

(39)

_ )/2
sn (@, k’) cn (p, k’)

1dn (B, k’) ‘

where

@’(f?, k’)
Z(P, k’) =

@(@, k’) “
(40)

The theta functions were evaluated using a Fourier se-

ries expansion. M values of t/b, s/b, Ci.’/~ and CI”O’/e

– CtJ/e were then calculated from (18), (26), and (37),

and plotted as function of ~/h7’, with k as parameter.

Values of t/b were selected to be used as parameters on

and final graph, and the related values of k and ~/K’

were taken from the t/b graph and tabulated. The values

of k and /3/K’ at each point were used to determine re-

lated values of s/b, Cfe’/e, and Cfo{/e – Cf,’/e from their

graphs. In this way it was possible to compile values of

s/b, Cf.’/e and CfO’/e — Cfe’/e for constant t/b. This com-

pilation was used to plot the final sets of curves shown

in Figs. 3 and 4.

M G. W. spenceley and R. M. Spenceley, “Smithsonian Elliptic
Functions Tables, ” Smithsonian Misc. CO1l., Washington, D. C.,
vol. 109; 1947.


