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Coupled Rectangular Bars Between Parallel Plates®

WILLIAM J. GETSINGER{, MEMBER, IRE

Summary—Curves are presented giving the even-mode fringing
capacitance, the odd-mode fringing capacitance, and the difference
between odd- and even-mode fringing capacitances for wide ranges
of thickness and spacing of rectangular bars centered between paral-
lel plates. Simple formulas are given relating these capacitances to
even- and odd-mode characteristic impedances of coupled rectangu-
lar bars. Possible applications to strip-line and other circuits are de-
scribed.

The Appendix gives the derivation of the fringing capacitances by
conformal mapping techniques. The results are exact for bars extend-
ing in width infinitely far from the coupling region, and have only
small error (less than 1.24 per cent) for bars whose width is greater
than about 35 per cent of the difference between plate spacing and
bar thickness.

I. GENERAL

B N WORKING with shielded strip-line, it is some-
J[ times desirable to couple center conductors having

appreciable thickness. The cross section of a typ-
ical structure of this type is shown in Fig. 1. There are
two parallel ground planes spaced a distance & apart,
and two rectangular bars located parallel to, and mid-
way between, the ground planes. It is well known!2 that
TEM propagation along such a structure can be de-
scribed in terms of two orthogonal modes, usually de-
noted as the even mode and the odd mode. In the even
mode, both center conductors are at the same poten-
tial, while in the odd mode, the two center conductors
are at opposite potentials with respect to the ground
planes. These two TEM modes have difterent charac-
teristic impedances, which are intimately related to the
static capacitances of the bars to ground. These capaci-
tances are designated conventionally as parallel-plate
capacitances between bar and ground planes, and fring-
ing capacitances from ends and corners of the bars, as
indicated schematically in Fig. 1.

Fig. 1—Coupled rectangular bars centered between parallel plates.
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Cohn?® has previously considered coupled rectangular
bars between parallel plates. He gives rigorous results,
based on a conformal mapping solution, for the zero-
thickness case, and adds correction terms to the zero-
thickness case to obtain approximate results for bars of
finite thickness. In a later paper,* Cohn provides an im-
proved approximation for the odd-mode correction
term. Horgan® has approached the problem by divid-
ing the cross section of the coupled rectangular bar
structure into insulated rectangular boxes, for each of
which potential solutions were available. Horgan then
corrected these approximations by adding new poten-
tial functions such that total potentials were matched
across the insulating bounds, and the resulting capaci-
tance was a maximum. Horgan’s results, like those of
Cohn, were written as exact thin-strip capacitance solu-
tions plus correction terms.

The present paper, however, does not modify a solu-
tion for coupled thin strips, but determines the fring-
ing capacitances for bars extending in width infinitely
far from the coupling region by an exact conformal
mapping method, and presents these fringing capaci-
tances directly on graphs for wide ranges of bar thick-
ness and spacing. The use of accurate graphs, giving the
fringing capacitances directly, allows the total capaci-
tance (and thus characteristic impedance, or alterna-
tively, bar width) of any of a variety of structures to be
determined quite easily by simply summing the ap-
propriate fringing and parallel plate capacitances, as
will be shown subsequently.

II. TeEcaNICAL DESCRIPTION

The characteristic impedance Z, of a lossless uniform
transmission line operating in the TEM mode is related
to its shunt capacitance by

Zo\/:; = ohms (1>

n
(C/e)
where

Ve, = the relative dielectric constant of the medium
in which the wave travels
7 =the impedance of {ree space=376.7 ohms per
square
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(C/e=the ratio of the static capacitance per unit
length between conductors to the permittivity
(in the same units) of the dielectric medium
(this ratio is independent of the dielectric con-
stant).

The even- and odd-mode impedances of coupled TEM
lines':? can be found by substituting even- and odd-
mode capacitances of the lines in (1).

A generalized schematic diagram of shielded coupled-
strip transmission line is shown in Fig. 2. The circles
represent the coupled conductors. The capacitance to
ground for a single conductor, when both conductors
are at the same potential, is C,., the even-mode capaci-
tance. The capacitance to ground when the two conduc-
tors are oppositely charged with respect to ground is
Cos, the odd-mode capacitance.

=5 (Coo—Coe

G

Fig. 2—Generalized schematic diagram.

10.0

January

The structure of Fig. 1 is composed of parallel-planar
surfaces. This makes it practical to consider the total
capacitance of a given strip to be composed of parallel-
plane capacitances plus appropriate fringing capaci-
tances. (Fringing capacitances take into account the
distortion of the field lines in the vicinity of the edges
of the plane strips.) Fig. 1 relates the various capaci-
tances to the geometry of the structure under consid-
eration. Thus, it can be seen that the total even-mode
capacitance C,./e from one bar to ground is

COE/G = Z(C;u/f + Cfe//e + Cf,/f) (2)

and the total odd-mode capacitance C,/e from one bar
to ground is

Coo/e = 2(Cp/e + Crd /e + Cf' /e). 3)

In (2) and (3), C, is the parallel-plate capacitance
from the top or bottom side of one bar to the nearest
ground plane; Cy is the capacitance to ground from
one corner and half the associated vertical wall in the
coupling region of a bar for even-mode excitation; Cyy
is the capacitance to ground from one corner and half
the associated vertical wall in the coupling region of a
bar for odd-mode excitation; and Cf is the capacitance
to ground from one corner and half the associated verti-
cal wall away from the coupling region of a bar for any
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Fig. 3—Fringing capacitances for coupled rectangular bars,
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Fig. 4—0dd-mode fringing capacitance for coupled rectangular bars.

excitation. Consideration of Fig. 2 and the definitions
of even- and odd-mode capacitances show that the
capacitance, AC/e, from one bar to the other is given by

AC/G = %(Coo/e - C06/6>' (4)

Subtraction of (2) from (3) shows that AC/e can be
written entirely in terms of the fringing capacitances as

AC/E = Cfo,/e hd Cf@’/e. (5)

Fig. 3 is a plot of both even-mode fringing capaci-
tances, Cy! /e, and the capacitance, AC/e, between bars
as functions of bar thickness and spacing, while Fig. 4
is a similar graph for the odd-mode fringing capaci-
tance, Cs’/e. The derivation of Figs. 3 and 4 is described
in the Appendix. Fig. 5 gives the fringing capacitance
C/ /e from the outer edges of the bars as a function
of thickness. The parallel plate capacitance Cp/e is
given by '

w/b

T X

Cple =2
where w and ¢ are the width and thickness of the bar.
Through the use of the above relations and figures, it is
possible to relate physical dimensions of the given con-
figuration to even- and odd-mode capacitances or im-
pedances.

ol 02 03 0.4 05 o2 [oXg o8 [o:]
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Fig. 5—Fringing capacitance for an isolated rectangular bar.
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IT1I. Use or THE GRAPHS

Usually, an engineer designing parallel-coupled lines
first determines the wvalues of even- and odd-mode
impedances, Z,, and Z,, or even- and odd-mode capaci-
tances, C,, and C,, as required by theoretical considera-
tions. He then wishes to determine the corresponding
physical line dimensions. A simple procedure accom-
plishes this. Using (1) in (4) gives

AC/e = —1— (1 —i> %
fe=ve\u. ")

Values of b and ¢ are selected and used with the value
of AC/e found from (7) to determine s/b directly from
Fig. 3. Next, Cs/e is determined by using Z,, in (1),
and then Cy//e and C; /e are found from ¢/b and from
the graphs of Figs. 3 and 5. These quantities can be sub-
stituted into the following equation to give w/b

n= (- )

Eq. (8) results from substitution of (6) in (2), and re-
arrangement of terms.

Thus, the two unknown dimensions, s/b and g¢/b,
have been determined.

G fe— cf'/e). (®)

IV. CONSIDERATIONS OF ACCURACY

If the bar width w is allowed to become too small,
there is interaction of the fringing fields from the two
edges, and the decomposition of total capacitance into
parallel plane capacitance and fringing capacitances
(which are based on infinite bar widths) is no longer ac-
curate. Cohn® shows that for a single bar centered be-
tween parallel planes, the error in total capacitance from
interaction of the fringing fields is about 1.24 per cent
for w/(b—1) =0.35, where w is the width of the bar, ¢ is
its thickness, and b is again the ground-plane spacing.
If a maximum error in total capacitance of approxi-
mately this magnitude is allowed, then it is necessary
that [(w/b)/(1—1/b)]>0.35.

Should this inequality be too restricting, it is possible
to make approximate corrections based on an increase
in the parallel-plate capacitance, to compensate for the
loss of fringing capacitance due to interaction of fring-
ing fields. If an initial value w;/b is found to be less than
0.35[1— (/D) ], a new value, ws/b can be used, where

wa/b = [0.07[1 — (1/b)] + w1/b}/1.20 9
provided that 0.1<(w./b)/[1—(t/b)]<0.35. This for-

mula is based on a linear approximation to the exact
fringing capacitance of single thin strip for a (w/b)/
[1—(¢/b)] ratio between 0.1 and 0.35. As the relative
strip width becomes narrower than 0.35, the fringing

¢ S. B. Cohn, “Problems in strip transmission lines,” IRE TraNs.
ON MicrowAVE THEORY AND TECHNIQUES, vol. MTT-3, pp. 119-126;
March, 1955.
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capacitance, defined as total capacitance less parallel
plate capacitance, becomes smaller. The total capaci-
tance is given by substituting into (1) the exact thin-
strip formula for Z, given by Cohn.® Eq. (9) adds suffi-
cient parallel-plate capacitance to compensate for the
loss of fringing capacitance. The loss of fringing is as-
sumed to vary linearly below a relative width of 0.35.
Although the formula is analytically only approximate,
it is sufficiently accurate for practical use because it
does no more than give a small correction to a quantity
that is reasonably close to the exact value. It can be
used with both isolated and coupled bars.

The derivations for the fringing capacitances are
exact for bars extending in width infinitely far to the
right and left, away from the coupling region. The orig-
inal computed values were accurate to eight places.
However, in order to give values of fringing capacitance
associated with constant {/b, it was necessary to use
graphical interpolation, as pointed out in the Appendix.
The plotted points were held to an accuracy of three
figures after the decimal point, so that the interpolated
results are slightly less accurate. The curves of Figs. 3
and 4 are accurate to within about one or two per cent.
However, since fringing capacitances are usually not the
predominant part of the total capacitance of a struc-
ture, total capacitance can be specified with somewhat
greater accuracy.

Fig. 5, for the fringing capacitance Cy'/e of a single
bar extending infinitely far in one direction, is based on
an exact solution given by Cohn.® The same data can
be found from Figs. 3 and 4 by reading either C;,'/e or
Cy,' /e as functions of #/6 {or large s/b. The accuracy of
Fig. 5 is thus limited by the precision to which the
graph can be read.

V. APPLICATIONS

Figs. 3-5, for fringing capacitances, can be used for a
variety of structures, as shown in Fig. 6, simply by add-
ing the appropriate fringing capacitances with the
parallel plate capacitances to give the even-mode capaci-
tance, the odd-mode capacitance, or the total capaci-
tance. Use of (1) then gives the associated characteristic
impedance. Thus, Fig. 6(a) shows ordinary shielded
strip-line and the capacitances involved when it is open,
closed at one end, or closed at both ends.” The struc-
ture closed at one end is sometimes called trough-line,
the structure closed at both ends is sometimes called
rectangular coaxial line. Similarly, the even- and odd-
mode capacitances and impedances can be determined
for the coupled structures shown in Fig. 6(b) for open
or closed ends. This simple technique may also be appli-
cable when the arms of an N-way power divider in
shielded strip-line must run parallel for some distance,
as shown in plan in Fig. 6(c). The even-mode fringing

7 The notation in Fig. 6(a), Cs'(ss/b) and Cy,/(s3/b), does not
indicate multiplication, but merely that C,’ is to be evaluated at
sa/b or s5/b, as appropriate for the spacing from the nearby wall.
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Fig. 6—Possible applications.

“capacitance Cy,” would then be appropriate for adjacent
ecges of the arms. ,

Both even- and odd-mode {ringing capacitances would
be necessary for multi-element lines, such as are shown
in Fig. 6(d) and (e). The cross section shown in (d) could
be part of a meander or interdigital line, while that in
(e) might be part of a finite or infinite array of elements,
which might be used as an artificial dielectric medium.

The curves given herein can be used in the design of
wide-band, parallel-coupled, strip-transmission-line fil-
ters, such as described by Matthaei.® Also, Bolljahn
and Matthaei® have presented design data for slow-wave
structures and filters using parallel-coupled arrays of
line elements. Some realizations of those devices use
relatively wide rectangular bars to form an interdigital
line, comb line, meander line, or similar slow-wave line.
In such cases, the curves given herein greatly facilitate
the process of precision design.

Coupled rectangular bars may also be applied to
strip-line directional couplers, described by Jones and
Bolljahn,? in which the use of rectangular bars allows
closer coupling to be achieved with less critical toler-
ances.

APPENDIX
DERIVATION OF FRINGING CAPACITANCES
FPreliminary

It is desired to determine the static fringing capaci-
tances shown on the structure of Fig. 1 by means of con-
formal mapping techniques.'®! This can be done by

8 G. L. Matthaei, “Design of wide-band (and narrow-band) band
pass microwave filters on the insertion loss basis,” IRE TRANs. ON
MicrowaVvE THEORY anND TECHNIQUES, vol. MTT-8, pp. 580-593;
November, 1960.

*J. T. Bolljahn and G. L. Matthaei, “Microwave Filters and
Coupling Structures,” Stanford Res. Inst., Menlo Park, Calif., Re-
port No. 1, Contract DA 36-039 SC-87398; April, 1961.

10 W, R. Smythe, “Static and Dynamic Electricity,” McGraw-
Hill Book Co., Inc., New York, N. Y.; 1939. .

"L E. Weber, “Electromagnetic fields: theory and applications,”
in “Mapping of Fields,” John Wiley and Sons, Inc., New York, N. Y.,
vol. 1;1950.
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subjecting the boundaries of the structure to transfor-
mations under which capacitance is invariant, and that
lead to a new structure for which capacitance is known.
Subtraction of parallel plate capacitances of the original
structure from the total capacitance then leaves the
fringing capacitances. The analysis will be limited to
structures in which the bars are so wide that interaction
between fringing fields of the two edges of a single bar is
negligible. As discussed in Section IV, this requires that
the approximate relation {(w/b)/ [1—(/b)] } >0.35 be
held. Under these conditions it is possible to let the bars
extend in width infinitely far to the left and right, with-
out disturbing the fringing fields appreciably in the
coupling region where the capacitances interact. The
vertical centerline shown on Fig. 1 may be replaced by
an electric wall (conductor) for the odd mode, or by a
magnetic wall for the even mode, in consideration of the
symmetry of the structure. Also, the electric field can
lie parallel to the horizontal centerline where no con-
ductor exists, but cannot cross it because of the sym-
metry. Therefore, a magnetic wall can be placed along
the horizontal centerline. These modifications allow anal-
ysis of only one-quarter of the total symmetrical struc-
ture. The mathematical model is shown on the z-plane
in Fig. 7. Conductors are indicated by solid lines and
magnetic walls by broken lines. The upper-case letters
denote pertinent points of the structure and will serve as
references when transformations to different complex
planes are made.

The analysis essentially consists in transformation of
the contours of the structure on the z-plane into a par-
allel-plate representation on another complex plane,
where capacitance can be computed directly.

The static electric fields of interest lie within the poly-
gon defined by the boundaries of the structure on the
z-plane. The interior of this polygon is to be mapped
onto the first quadrant of the ¢-plane shown in Fig. 7.
The integral resulting from direct use of the Schwarz-
Christoffel transformation is

(1 —_ t2)1/2
i f (1 — EH)Y2(1 — k%2 sn? a)

dat, (10)

where, for the present, 1/k and 1/(k sn a) are the points
on the real ¢ axis to which the corner F and the point
—j» map from the z-plane. This integral can be evalu-
ated by further relating the first quadrant of the ¢-plane
to the interior of the fundamental rectangle of Jacobian
elliptic {functions on the u-plane, also shown in Fig. 7,
using the transformation

a1

b= snu.
This substitution gives

cn? udu
i :f o owwdw (12)
1 —k’sn’usna
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Fig. 7—Mathematical models on z-plane, ¢-plane, and u-plane.

In the above equations, sn # and cn # are Jacobian
elliptic functions having a quarter period K determined
by &, denoted by convention as the modulus. By virtue of
(11), @ can be considered to be a point on the perimeter
of the fundamental rectangle on the #-plane. It is con-
venient to let
A .

a=K—j8 (13)
by definition. Ultimately, 2 and 8 will be used as inde-
pendent variables.

The mapping of the gz-plane onto the #-plane in this
manner has been carried through by Cockroft,** whose
symbols are retained in Fig. 7 and in the equations
given in this section. The distances on the z-plane are
given by Cockroft as

dn e
d = K[l - Z(a)] (14)
k’snacna
. dn ¢ (1)
= —j— 5
§ j2 kE’snacna
P K = dn a <a 1) (16)
—J K ]2 k?snacna\K '

It should be noted that g is a negative quantity and %
an imaginary one. The quantity dn ¢ is also a Jacobian
elliptic function and Z(e) is the Jacobian zeta-function.
The quantity K’ is the same function of the comple-
mentary modulus £/, as K is of k. The moduli are re-
lated by

B4 B2 =1, (17)

12 J. D. Cockroft, “The effect of curved boundaries on the dis-
tributions of electrical stress round conductors,” J. IEE, vol. 66, pp.
385-409; April, 1926.
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Comparison of Fig. 1 with Fig. 7 shows that the con-
ventional normalized dimensions s/b and /b of the rec-
tangular bar structure are related to Cockroft’s dimen-
sions d, g, and % by

s/b = 7
d—g

b= - (18)
-

Thus, the physical dimensions of the structure of Fig. 1
have been related to the parameters of the u-plane by
(14)—(16) and (18).

Now it is necessary to transform the /-plane to a
parallel-plate structure, and determine fringing capaci-
tances as functions of #-plane parameters.

0dd-Mode Capacitance

The two rectangular bars in Fig. 1 are at equal and
opposite voltages when energized in the odd mode, so
that the plane midway between the bars is at zero poten-
tial. Thus, a conductor may be placed in this plane with-
out disturbing the fields. This is indicated by the solid
line between E and F on the planes of Fig. 7. For this
condition, the {-plane configuration can be transformed
to a parallel-plate structure of unit height by the func-

tion
1 <1+tksna>
w=—In|—]},
T 1 —tksna

(19)

which moves the singularity at 4G to infinity. The in-
teresting region of the w-plane is shown in Fig. 8.

w - PLANE

Fig. 8—w-plane for odd-mode capacitance.

The fringing capacitance is the difference between the
total capacitance of the structure (total capacitance is
the same on both z- and w-planes) and the parallel-
plane capacitance of the z-plane structure. A reasonable
definition for z-plane parallel-plate capacitance C,. is
parallel-plate capacitance existing between the ground
plane and the full length of the rectangular bar. Mathe-
matically,

Cpe
— = lim Im (3/g).

(20)
€ 2o —;®
Then the odd-mode fringing capacitance Cj,’/e is
Cro'/e = lim [w(z) — Im (z/g)] (21)

z——joo

where w(z) is given by (19) related to the z-plane. In
order to evaluate C;,’/e, it is necessary that both w and
Im(z/g) be expressed as functions of x. The limit must
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also be in terms of #. From Fig. 7 it can be seen that as
%77 j» along the path from C to 4, then u—»K+jK’ —jB
along the path from Cto .. Thus

. 2(1)
Cro'/e = lim, |:w(u) — Im :| (22)
u—K+3K —i8 g
Substitution of (11) in (19) gives
1 1+ ksnasnu
w(y) = —In| ————1). (23)
T 1—Fksnasnu
The limiting process is simplified by letting
uw =K+ jK' —j8 —js (24)

where 6—0 as u—K-jK’—jf along the path from C
to 4. Assuming very small 8, and using various elliptic
function equivalences, such as may be found in Byrd
and Friedman,® (23) reduces to

1
— —1Inéd. (25)

™

1 1 cnadna
w(u) = —In2——In| —j —-—>
§—0 ™ T sn a

Cockroft’s!? (44) gives 2(8) as
e dna
5(8) = (K +jK' — jB)| 1 — ——— Z(a)
k*snacna

1 dn e O(K — 75)

— In - (26)
2 kE*snacne  OQK + jK' — 2i8)

Using (26) with (15), and passing to the limit of & ap-
proaching zero, gives

1 27
- [z(u):l ~ (& -8 [_ Y Z(a)]
i—oL g g w
K’ 1 2kE' K
—_—— — —1Iné. (27)
4K 27 T T

In (26) and (27) the term ©® is Jacobi's theta function.!*
Now (25) and (27) can be substituted into (22), yielding

, 1 Zjsna 1 2kF'K K’
Cfo/6=*“‘1n‘—- 2—[}

T cnadnea

21 T
+ = L2 - |

1
— " OGK — 2i8). (28)

This is the final form in which odd-mode fringing ca-
pacitance will be presented.

13 P, F, Byrd and M. D. Friedman, “Handbook of Elliptic Inte-
grals for Physicists and Engineers,” Springer-Verlag, Berlin, Ger-
many; 1954.

HE. T. Copson, “Theory of Functions of a Complex Variable,”
Oxford University Press, London; pp. 405-407; 1960.
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Even-Mode Capacitance

The two rectangular bars in Fig. 1 are at the same
potential when energized in the even mode, so that no
electric field crosses the plane midway between them.
Thus, a magnetic wall may be placed in this plane with-
out disturbing the fields. This is indicated by the broken
line between E and F on the planes of Fig. 7. The upper
half of the {-plane is mapped into a strip of unit height
oun a tfi-plane in such a manner that the singularity at
AG is removed to infinity by the transformation

1 tksna—+ 1
oo LufEmern
T tksna — 1

The ti-plane is shown in Fig. 9. Notice that the upper
half of the f-plane maps into the strip directly below the
Re #; axis. The positive half of this strip is next mapped
onto the lower half of a f,-plane, shown in Fig. 9 by the
transformation

(29)

th = M — 14 M cosh wy, (30)
where
AN 2 cn?a
M= = — . 31
1 4+ cosh #t,(F) sn?g
Finally, the desired parallel-plate configuration is

achieved by mapping the lower half of the ¢,-plane onto
the positive half of a strip of unit height on the wi-plane,
using the transformation

wy = — arc cosh (—¢s).
T

(32)

The wi-plane is also shown on Fig. 9. Combining (11),
(29), (30), (31), and (32) gives w; as a function of

1
v
T

cnla  cn’a

w, (1) = — arc cosh

sn?a

. [(k sngsnu)? -+ 1]} C(33)

(ksnasnu)? — 1

sn’a

As with the odd mode, it is convenient to use the vari-
able 8, defined by (24), in passing to the limit. When
(24) is substituted in (33) and appropriate approxima-
tions made for small §, manipulation yields

1
—7 — —In
a ™
Using the definition of z-plane parallel-plate capacitance
given in (20), the even-mode fringing capacitance,

Cfe,/é is
[wl(u) — Im ;z(u)]
g

1 1 cn a
wi(y) =—1In2 4+ —1In

80 ™ w

8. (34)

sn ¢ dn

Cyre'
L~ fim

€ 8§ -0

(35)
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Fig. 9—t#-plane, f-plane, and wi-plane for even-mode capacitance.

Substitution of (34) and (27) in (35) yields, after simpli-
fication,

Cid 1 —2jena 1 2K K’
=—h{——)+—1In —
€ T sn ¢ dna 2T T 4K
2jZ(a) 1
o[B80 1]
T g

1
— — I OGK' — 2B). (36)
™
This is the final form in which the even-mode fringing
capacitance will be given.

Difference of Fringing Capacitances

The difference between fringing capacitances, C,//e
—Cr' /e, is a very useful quantity because in most
coupled structures it is also half of the difference be-
tween total odd-mode and even-mode capacitances. This
difference is found by subtracting (36) from (28), vield-
ing
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Evaluation of Formulas

The curves of Cr'/e and Cy,'/e— C;,' /e as functions of
s/b and t/b were determined in the following manner:
values of 0 <k <1 were selected from tables!®! that de-
termined K, K’, and #’; then for each value of k, a range
of values of 8/K’ was selected from tables! that gave
sn (B, k), cn (B, &), and dn (8, #’). These functions are
related to sn ¢, cn a, and dn a by

1
sn (a, k) = ————,
dn (8, &)
sn (B, &)
, k) =k ———,
@B =] dn (8, #')
cn (B, &)
d k) = K ———— . 3
n(e, k) =k dn 8, 1) (38)
The zeta function can be expressed as
Z(a, k) = ‘[w ¥) + 2
a, =17 “\My ZKK, (39)
o3 (6, ) en 6, k/)}
dn (8, #) ’
where
'8, k')
Z(B k) = ——— . 40
(8, &) oG, 7) (40)

The theta functions were evaluated using a Fourier se-
ries expansion.** Values of #/b, s/b, C;,//e and Cy,'/e
—Cy'/e were then calculated from (18), (26), and (37),
and plotted as function of 8/K’, with % as parameter.
Values of £/b were selected to be used as parameters on
and final graph, and the related values of % and 8/K’
were taken from the ¢/b graph and tabulated. The values
of & and B/K’ at each point were used to determine re-
lated values of s/b, Cy. /e, and Cy,'/e— Cy,’ /e from their
graphs. In this way it was possible to compile values of
s/b, Cy' /e and Cp'/e— Cy.' /e for constant £/b. This com-
pilation was used to plot the final sets of curves shown
in Figs. 3 and 4.
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